首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6995篇
  免费   540篇
  国内免费   857篇
  2023年   97篇
  2022年   112篇
  2021年   197篇
  2020年   176篇
  2019年   200篇
  2018年   212篇
  2017年   188篇
  2016年   196篇
  2015年   214篇
  2014年   264篇
  2013年   419篇
  2012年   236篇
  2011年   244篇
  2010年   212篇
  2009年   264篇
  2008年   287篇
  2007年   344篇
  2006年   348篇
  2005年   321篇
  2004年   244篇
  2003年   349篇
  2002年   263篇
  2001年   221篇
  2000年   198篇
  1999年   211篇
  1998年   165篇
  1997年   191篇
  1996年   179篇
  1995年   166篇
  1994年   181篇
  1993年   181篇
  1992年   141篇
  1991年   142篇
  1990年   133篇
  1989年   131篇
  1988年   126篇
  1987年   103篇
  1986年   68篇
  1985年   77篇
  1984年   57篇
  1983年   34篇
  1982年   50篇
  1981年   39篇
  1980年   40篇
  1979年   28篇
  1978年   15篇
  1976年   26篇
  1973年   22篇
  1972年   14篇
  1971年   14篇
排序方式: 共有8392条查询结果,搜索用时 15 毫秒
1.
2.
目录     
《生态学杂志》2015,26(7):0
  相似文献   
3.
Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature.Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques.Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production.Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs.  相似文献   
4.
5.
The gene of a bacterial lysine decarboxylase (ldc) fused to arbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures ofNicotiana tabacum. The fusion of theldc to the targeting signal sequence improved the performance of the bacterial gene in the plant cells in many respects. Nearly all transgenic hairy root cultures harbouring the35S-tp-ldc gene contained distinctly higher lysine decarboxylase activity (from 1.5 to 30 pkat LDC per mg protein) than those which had been transformed with constructs in which the gene had been directly cloned behind the CaMV 35S promoter. The higher enzyme activity led to the accumulation of up to 0.7% cadaverine on a dry mass basis. In addition, part of the cadaverine pool was used for increased biosynthesis of anabasine, an alkaloid which was hardly detectable in control cultures. The best line contained anabasine levels of 0.5% dry mass, which could further be enhanced by feeding of lysine.  相似文献   
6.
At what intensity the grazing should be practiced on the Qinghai-Tibetan Plateau in China is always confusing farmers, scientists and policy makers for a long time owing to its geographical exception. In order to develop a strategy for sustainable grazing management, we used the dominant Stipa purpurea as a model species to detect genetic diversity and fine spatial structure under different grazing intensities. Intra-population neutral genetic diversity in non-grazed population was significantly higher than three grazed populations; however, the highest value among grazed populations appeared in the moderately grazed population. A relatively low degree of genetic differentiation among populations by AMOVA analysis and a high level of gene flow existed among populations (Gst = 0.2649, Nm = 1.3875 〉 1). The genetic ‘patch’ size increased from 4 m to 16 m and subpopulation number within the S. purpurea populations ranged from 7 to 5 with increasing grazing intensity, therefore grazing will be beneficial to reduce the fragmentation and to increase the population-level adaptation. Though enclosure or no grazing is the best protection of plant germplasm like wind-pollination S. purpurea, moderate grazing is better strategy for grassland use on the Qinghai-Tibetan Plateau.  相似文献   
7.
Hydraulic lift occurs in some deep-rooted shrub and herbaceous species. In this process, water taken up by deep roots from the moist subsoil is delivered to the drier topsoil where it is later reabsorbed by shallow roots. However, little is known about the existence of hydraulic lift in shallow-rooted xeric species. The objectives of this study were 1) to ascertain whether hydraulic lift exists in Gutierrezia sarothrae (broom snakeweed), a widespread North American desert species with a shallow root system, grown in pot and field conditions and 2) if it does, how much water can be transferred from the subsoil to the 30 cm topsoil during the night. Snakeweed seedlings were transplanted in buried pots allowing the deeper roots to grow into the subsoil 30 cm below the surface. Soil water content inside and outside of the pot was measured seasonally and diurnally with time domain reflectometry technique (TDR). An increase in water content was detected in the pot after the plant was covered for 3 h by an opaque plastic bag during the day, suggesting hydraulic lift from deeper depths and exudation of water into the drier topsoil. Root exudation was also observed on native range sites dominated by snakeweed. Water efflux in the pot was 271 g per plant per night. which was equivalent to 15.3% of the extrapolated, porometer-derived whole-plant daily transpiration. Hydraulic lift observed in Gutierrezia improved water uptake during the day when evaporative demand is high and less water is available in the topsoil. We concluded that hydraulic lift might help snakeweed to alleviate the effect of water stress.  相似文献   
8.
The inhibitory effects of PEG on whole-plant growth can exceed the effects of other osmolytes such as NaCI, and this has been ascribed to toxic contaminants, or to reduced oxygen availability in PEG solutions. We investigated another possibility, namely that PEG has an additional inhibitory effect on root water transport which in turn affects leaf development. The effects on first-leaf growth of applications of PEG 6000 or isoosmotic NaCI to the roots were determined using hydroponically grown maize (Zea mays L.) seedlings. Leaf growth rates were inhibited within minutes of PEG application to the roots and remained inhibited for days. The inhibitory effects on growth of NaCI, and also of KCl and mannitol, were much smaller. The comparative effects of NaCI and PEG on root water transport were determined by assaying pressurized flow through excised roots. PEG induced a 7-fold greater inhibition of flow through live roots than NaCI. Killing of the roots by heat treatment, to reduce cell membrane resistances to solute penetration, nearly doubled the flow rate for roots in NaCI, but not for roots in PEG. We suggest that the greater viscosity of PEG solutions, as compared with NaCI, may be a primary factor contributing to the additional inhibition of water flow through live and killed roots. PEG did not have additional effects on leaf turgor but had a 3 times greater inhibitory effect than NaCI on the irreversible extensibility of the leaves and induced 16 times more leaf accumulation of the growth inhibitory stress hormone abscisic acid (ABA). We conclude that greater inhibition of root water transport by PEG 6000, as compared with NaCI, leads to additional reductions in extensibility, additional ABA accumulation, and a greater inhibition of leaf growth.  相似文献   
9.
阿拉善高原2种荒漠植物根系构型及生态适应性特征   总被引:1,自引:0,他引:1  
马雄忠  王新平 《生态学报》2020,40(17):6001-6008
根系构型决定了植物对资源的吸收方式,根系构型的变化是植物对环境的生态适应和有效生存策略。在阿拉善高原西南缘红砂(Reaumuria soongarica)-珍珠猪毛菜(Salsola passerina)混生群落采用传统挖掘法收集两种植物根系,基于量化的根系形态指标,利用几何拓扑学及分形理论分析了根系构型特征,探讨了该地区2种植物对干旱生境的生态适应策略。结果表明:红砂和珍珠猪毛菜根系均以水平分布占优,根系浅层化分布明显,混生的两种植物占据不同的生态位;2种荒漠植物均具有较大的比根长(SRL)和比表面积(SRA),红砂SRL=21.3 cm/g,SRA=7.6 cm2/g,珍珠SRL=22.4 cm/g,SRA=6.5 cm2/g,有利于水分和养分的获取;红砂根系拓扑指数(TI)、修正拓扑参数(qa和qb)分别为0.86、0.52、0.49,珍珠猪毛菜对应参数分别为0.93、0.76、0.73,表明2种植物根系均趋向于鱼尾形分支结构;根系分形维数值(FD=1.488、FD=1.422)较小,而分形丰度值(lgK=1.855、lgK=1.774)较大,表明2种植物分支相对简单,但空间拓展能力强,有利于对营养空间的占有。上述特征可能是阿拉善西南缘红砂-珍珠猪毛菜群落2种荒漠植物植物对干旱贫瘠生境的重要生态适应策略。  相似文献   
10.
Surface-coat epitopes of Meloidogyne incognita were detected in root tissues of Arabidopsis thaliana during migration and feeding site formation. A whole-mount root technique was used for immunolocalization of surface coat epitopes in A. thaliana, with the aid of a monoclonal antibody raised specifically against the outer surface of infective juveniles of M. incognita. The antibody, which was Meloidogyne-specific, recognized a fucosyl-bearing glycoprotein in the surface coat. During migration in host tissues the surface coat was shed, initially accumulating in the intercellular spaces next to the juvenile and later at cell junctions farther from the nematode. Upon induction of giant cell formation, the antibody bound to proximally located companion cells and sieve elements of the phloem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号